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Motivation

@ Pseudorandom binary sequences are essential in cryptography, coding
theory, and simulations.

@ In 1997, Mauduit and Sarkozy introduced measures in order to study
the pseudorandom properties of finite binary sequences:
well-distribution (W), correlation (Cx), and combined (Q)-

@ This work extends these concepts to multidimensional (2D and 3D)
binary lattices.
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Pseudorandom measures

Definition (Well-distribution measure)

For a binary sequence Ey = (e1, €2, ...,en) € {—1,1 N of lenght N, write
t
U(En, t,a,b) = Z Boicfty
j=0

Then the well-distribution measure of Ey is defined as
t

W(En) = max|U(En. t, 3, b)| = max Zoea—i-jb

where the maximum is taken over all a, b, t such that a, b,t € N and
1<a<a+th<N.
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Pseudorandom measures

The well-distribution measure studies how close are the frequencies of the
+1's and —1's in arithmetic progressions (for a binary sequence with
strong pseudorandom properties these two quantities are expected to be
very close.)

If the subsequence (+1,+1) occurs much more frequently then the
subsequence (—1,—1), then it may cause problems in the applications, and
we cannot say that our sequence has strong pseudorandom properties.

In order to study connections of this type Mauduit and Sarkozy introduced
the correlation and normality measures:
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Pseudorandom measures

Definition (Correlation measure)

For a binary sequence En = (€1, €2, .

.,en) € {—1,1}N of lenght N, and
for D = (dl, ..

., d¢) with non-negative integers 0 < di < --- < dy, write

M
V(En, M, D) = enia, " €nta-

Then the correlation measure of order to ¢ of Ey is defined as

ax |V(En, M, D)| = max

Z en+d1 . en—i—dg

where the maximum is taken over all D = (di, da,
that 0 < di < ---<dy < M-+dy <N.

)

..,dy) and M such
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Pseudorandom measures

Definition (Normality measure)

For a binary sequence Ey = (e1, €2, ..., ey) € {—1,1}N of lenght N, and
for X = (x1,...,%) € {—1,+1}¢ write

T(En, M, X)={n:0<n< M, (ent1,€nt2s---,€nse)}|-

Then the normality measure of order ¢ of Ey is defined as

Ne(Ew) = max | T (En, M, X) = M/2"|

)

where the maximum is taken over all X = (xq,...,x) € {—1,4+1}¢ and M
such that 0 < M # N — ¢ + 1.
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Pseudorandom measures

@ The combined (well-distribution-correlation) pseudorandom measure
is a common generalization of the well-distribution and the correlation
measures.

@ This measure has an important role in the multidimensional extension
of the theory of pseudorandomness.

Definition (Combined measure)

For a binary sequence Ey = (e1, 2, ...,en) € {—1,1}N of length N, and
for D = (di,...,dy) with non-negative integers 0 < dy < --- < dy

t
Z(En,a,b,t,D) = E €atjbtdy ** * €atjbidy-
Jj=0
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Definition (Cont.)

Then the combined (well-distribution-correlation) measure of order ¢ of Ey
is defined as

Qr (EN) = max ]Z(EN,a b, t, D ’— max Zea+1b+dl " €atjbtdy|

avbvtvD ab i D

where the maximum is taken over all a, b, t and D = (d, ..., dp) such that
all the subscripts a + jb + d; belong to {1,2, ..., N}.
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Pseudorandom measures in 1-dimension

o Sequences Ey = {ey,...,ey} € {—1,1}N
@ Well-distribution measure:

W(Ey) = max Zeaﬂb

@ Correlation measure of order k:

M
E €ntdy " Enddy
n=1

CklEn) = 1%

@ Combined measure:

Qk(En) = anlg?rx Zea+1b+d1 * " €atjbtdy
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Binary Lattices

In order to study the multidimensional analog of pseudorandomness,

Hubert, Mauduit, and Sarkozy [3] introduced the following definitions and
notations:

Denote by Iy the set of n-dimensional vectors whose coordinates are
integers between 0 and N — 1:

In={x=0a,..,%n) i x1,...,xp € {0,1,...,N —=1}}.

This set is called an n-dimensional N-lattice or, briefly, an N-lattice.
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Binary Lattices

In [3], the definition of binary sequences is extended to more dimensions
by considering functions of type

n(x) : Iy = {-1,+1}.
If x = (x1,X2,...,Xp) so that n(x) = n((x1,x2,...,Xp)) then we will
slightly simplify the notation by writing n(x) = n(x1, x2, . . . , Xn)-

Such a function can be visualized as the lattice points of the N-lattice
replaced by the two symbols + and —; thus, they are called binary
N-lattices. Binary 2- or 3 dimensional pseudorandom lattices also have
many applications, e.g., in the encryption of digital images or maps.
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Box N-lattice

The definition of /f is extended to more general lattices in the following
way: Let ug,uy,...u, be n linearly independent vectors, where the i-th

coordinate of u; is non-zero, and the other coordinates of u; are 0, so u; is
of the form (0,0,...,0,z,0,...,0). Let t1,tp, ..., t, be integers with
0<ty,t0,...,t, < N. Then we will call the set

By = {x = xqur+xouz+- - -+x5upn : 0 < xj|uj| < ti(< N) for i =1,2,...,n}

an n-dimensional box N-lattice or, briefly, a box N-lattice.
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Measures of Binary Lattices

In [3], Hubert, Mauduit and Sarkozy introduced the following
pseudorandom measure of binary lattices:

Let
n:ly—{-1,+1}.

The pseudorandom measure of order £ of 1 is defined by

Qi(n) = pex Zn +dy)---n(x+dg)l,
L1yeeey Z
where the maximum is taken over all distinct dy,d>, ... ,dy € I and all

box N-lattices B such that B +dy,..., B +d, C I.
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Measures of Binary Lattices

Then, 7 is said to have strong pseudorandom properties, or, briefly, it is
considered a good pseudorandom lattice if the measure Qy(7) is small

(much smaller than the trivial upper bound N") for fixed n and ¢ and large
N.

This terminology is justified by the fact that, as was proved in [3], for a

truly random binary lattice defined on /5, and for fixed ¢, the measure
Qu(n) is small (less than N"/2 multiplied by a logarithmic factor).
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Measures of Binary Lattices

So far, numerous pseudorandom lattices have been generated with optimal
pseudorandom measures, see

o K. Gyarmati, C. Mauduit, A. Sarkozy Pseudorandom binary sequences
and lattices Acta Arithmetica 135 (2008) 181-197.

o K. Gyarmati, A. Sarkozy, C.L. Stewart On Legendre symbol lattices

o K. Gyarmati, C. Mauduit, A. Sarkézy On finite pseudorandom binary
lattices

o L. Mérai, A construction of pseudorandom binary sequences using
rational functions, Unif. Distrib. Theory 4 (2009), no. 1, 35-49.

o L. Mérai, Construction of pseudorandom binary lattices using elliptic
curves, Proc. Amer. Math. Soc. 139(2) (2011), 407-420.

o L. Mérai, J. Rivat, A. Sarkozy, The measures of pseudorandomness
and the NIST tests, Lecture Notes in Comput. Sci., 10737, Springer,
Cham, 2018, 197-216.
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Construction of Binary Lattices

For almost all constructions of pseudorandom binary lattices with strong
pseudorandom properties the generation of the elements of the lattice is
quite slow. However, in certain applications, we need to generate the
elements of the lattice quickly.

In these cases, we recommend the following algorithm: Let
E=(ei,e,...,en) and F = (f,f,...,fy) € {—1,+1}" be two
pseudorandom binary sequences with strong pseudorandom properties;
then, we define the binary lattice n = nexr : I,%, — {—1,1} by

n(x,y) = exy1fy41
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Measure of Binary Lattices

Then, the elements of the lattice can be generated rapidly since each
element can be obtained by a simple multiplication, where the
multiplicands are all 1 or —1.

The question is, how large are the pseudorandom measures of the lattice?
| can determine the exact values of Q» and (k41 of the lattice, but
unfortunately, the value of Q,x is always large if k > 2:

Theorem (Case of odd k)

Let E € {—1,+1}N and F € {~1,+1}N be pseudorandom binary
sequences. Then,

Q2ev1(NEXF) =

max{ Q1(E), Q3(E), ..., Qae41(E)} max{Q1(F), Qs(F),. .., Qu+1(F)}
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Proof of Theorem

What is the situation in case of odd k7 We are trying to estimate the Q
combined measure with the maximum of pseudorandom measure of order

f + 1 combined measures, where ¢/ = 1,2,
In k =2¢ + 1 we have box-

dy = (di1, d12), . ..
Qr(nexr) <

D

X1,X2€Il X Iy

<

n ((x1, x2) +

k.
)
lattice B and k pieces of coordinates

,dy = (dk1, di2)

(d11, d12)) - - - ((x1, x2) + (di1, dk2))

t1 t2
=) nla+du)-nla+da)| - | D nle + diz) - nxe + di2)
x1=0 x2=0
t1 [%)
= Z Ex+dn T Sxatdia | Z fotdin *** Botdio
x1=0 x2=0
= max{Q(E), Q3(E), ..., Qu(E)} - max{Qu(F), @3(F) ..., Qu(F)}
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Proof of Theorem

Now we prove

Qr(nexF) >
max{Q1(E), Q3(E),..., Q(E)} - max{Qi(F), Q3(F)..., Q(F)}

Consider the numbers 0 < di1, d12, ..., dk1, dko for which

51
Q«(E) = Z Exi+din T Sxatdia

x1=0

and
[%]

Qk(F) = Z f)<2+d12 T szerkz

x2=0

Define d1 = (d11, d12),d2 = (d21, dgz), e dk = (dk1; dkg). Then
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Proof of Theorem

Qu(nexr) = |Y_n(x+do)n(x+d2) - n(x + d)| =
xeB

= Z n((x1,x2) + (d11, d12)) - - -1 ((x1, x2) + (dk1, dk2))

x1,X2€h X I

= ZU((X1+d11)' ((x1 + dk1)

x1=0

Z n((x2 + di2) - - - ((x2 + dk2)

x2=0
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Proof of Theorem

x1=0

[}
’ Z fotdi *** botdi
x2=0

=max{Q1(E), Q3(E),..., Qk(E)} - max{Qi(F), Q3(F) ..., Qx(F)}

o =3 = £ DA
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Measure of Binary Lattices

Theorem (¢ = 2)

Let E € {—1,+1}N and F € {~1,+1}N be pseudorandom binary
sequences. Then,

Q(nexF) = max{NQx(E), NQx(F)}
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Proof of Theorem

First we prove that

Q2(nexrF) < max{N - Q(E), N - Q(F)}

Consider the box-lattice B and vectors di = (d11, di2) and da = (da1, d22)
for which

2(NEXF) 277 +d1)n(x +d2)]|.
xEB
Then write B of the form
B={(x1z1,%02):0<x121 < t;,0 < x0zp < b} =h x b

where

L = {x121 0<x1z1 < tl} b= {X222 0 < x0n < tz}.
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Proof of Theorem

Then

Q(nExF) =

= Z 1 ((x1, x2) + (11, d12)) 1 ((x1, x2) + (o1, da2))

x1,X2€h X I

t1 [%)
= D nla+ din)nla+dar)| - | Ym0 + dar)n(xe + dao)
x1=0 x2=0
t1 %)
= Z Exi+di " Sq+da | Z fotdis * Botda| < maX{NQZ(E)a NQ2(F)}
x1=0 x2=0
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Proof of Theorem

Next we prove the Qa2(nexr) > Q2(E) x Q2(F) consider the sets
h={x1z1:0<x1z1 < t1} and h={xz:0<xzn <t}

and numbers 0 < di1, do1, d12, dop < N for which

QZ(E) = Z €x1+di1 Ex+dan

0<x1z1<ty

and

@(F) = Z Fotdia o+dna-

0<x2z2<ty
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Proof of Theorem

Define d1 and d2 by d1 = (d11, d12) and d2 = (d21, d22). Then

D n(x+ do)n(x + da)

xEB

Q(nExF) >

[%)
> (e + di2)n(xe + daa)

x2=0

ty

>l + di)n(xa + da)

X1:0

%)

E : fX2+d12 ’ sz+d22

x2=0

t1

E , Eq+di1 * Exqtdn|
x1=0

with this we proved that Qx(ngxr) = max{N - Q(E), N - Qz(F)} O

= max{NQ(E), NQ:(F)}.
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Measure of Binary Lattices

Theorem (Even case)

Let E € {—1,+1}N and F € {~1,+1}N be pseudorandom binary
sequences and £ > 2. Then,

Qu(nexr) > (N — € +2)?
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Proof of Theorem

Let’s consider the Q. Let x = (x1, x2), d1 = (0,0), d2 = (0, 1),

ds = (1,1), ....d2e = (¢ — 1,0)

Qunexr) = | > n(x+di)n(x+da)...

XEI,%F1

N—0+1 N—{+1

x1=0 x»=0

N—£+1 N—{+1

x1=0 x»=0

= Z Z X1,X2 X1,X2—|—1) (X1,X2+€—1)

= E E eq+1fot16xq+1for28q+2f0+1 - - Exqti—1fo+1

?7(X + dzg)
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Proof of Theorem

N—f+1 N—¢+1
= E: Cq+1- 1+2 x1+0—1]
x1=0

dYoof,

X2+1f2+2
x2=0

YD 1 =(N-r+2)

xp+£—1

=] = = E nae
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Binary Lattices

What method should we use to choose coordinate points for any £7 If we

plot the points £ = 2,3,... we can notice some regularity. Consider the
following coordinates:

(,i+1) if i=0,1,...,0-2
(i, 1) if i=01,...0-1
(6_170)
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Binary Lattices

1 2 3 4 (-1

Figure: Step function shape in the coordinate system

Karoly Miillner (ELTE) Measures of Pseudorandomness CECC 2025 32/49



Measure of Binary Lattices

This generation method is viable when we want to use the lattices in
applications where it is sufficient that the measures @1, @>, and Q3 are
small (e.g., Monte Carlo methods).

If we still need Q4 to be small (e.g., in encryptions), we need to look for
another method.

Note also that Gyarmati [1] generated a sequence of length N2 from the
lattice 7 : I,%, — {—1,+1}, by writing the rows of the lattice consecutively
from the bottom up to the top. She proved that if, for the lattice

n: 12 = {—1,+1}, Qk is small, then the resulting sequence of length N?
has a small C, measure.
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Measure of Binary Lattices

By incorporating this method into our previous construction, we can
generate a lattice from two sequences E and F € {—1,+1}V, and then a
sequence of length N2, by writing the rows of the lattice consecutively in
sequence from the bottom up to the top.

Then, the resulting sequence of length N? has small pseudorandom
measures W, Gy, and Gz if the measures Q2(E), Qx(F), Q3(E), and Q3(F)
of the original sequences of length N are small. With this technique, we
obtained a much longer sequence (length N?) from two short sequences
(length N), such that the low-order pseudorandomness measures W, G,
and C3 are close to optimal.

Karoly Miillner (ELTE) Measures of Pseudorandomness CECC 2025 34 /49



Binary Lattices

We saw that Q1, Q2, Qs are small and Q4 (and Qo) for £ > 2 are large.

In case of k > 5 the calculation of Qy is hopelessly slow with computer as
well, but in this paper we focus on that applications in which Q1, Q2, Q3
are small because this garanties the pseudorandomness of the applications.

Summarize above results we have:

o Q= W(E)- W(F)

o Q@ = max{NQ(E), NQ:(F)}

e Q3 = max{Q1(E), Q(E)} - max{Q1(F), Q3(F)}
© Q> (N—(+1)
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3-dimension lattices

Let x = (x1, %2, x3), d1 = (d11, d12, d13) and dp = (dbo1, doo, da3). Let
B, di, d> fixed and

By = {(xaz1, %022, x323) : x1, 50,33 € {0,1,- -+ ,N—1}} = h x b x |5
where
h={xz:0<x1z1 < t1},
= {X222 0 < x02p < tz},
I = {X3Z3 0 <x3z3 < t3}
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3-dimension lattices — Q»(7)

Consider the following pseudorandom measure of order 2 of #:

Q2(NExFxG) = max Z n(x+d1)n(x+dz)

X1,X2,x3€ N X x|

@(MExFxc) = max{N? - Q(En), N* - @(Fn), N* - @(Gn)}
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3-dimension lattices — Proof

At first we prove that

Q2(nExFxG) < N*Qa(En) - N2Qa(Fn) - N* - Qa(Gy)

Let B a box lattice and di = (d11, dio, d13) and d» = (d21, do, d23)
vectors and let

B = {x121,%02,x323 : 0 < x121 < 11,0 < x02p < 1,0 < x323 < t3}
= /1 X 12 X I3

where

h={x1z1:0<xz1 < t1}, h={xz:0<xz < b},
I3 = {X3Z3 0< x323 < t3}
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3-dimension lattices — Proof

Then

Q(NExFxG) =

>

X1,X2,x3E X lhx |3
t1

n(x+di)n(x+d2)| =

[2)

Z n(x1 + di1)n(x1 + do1)
X1:O

t3

Z n(x2 + di2)n(x2 + d22)
x2=0

Z n(xs + diz)n(xe + daz)
x3=0

=] = = E nae
Karoly Miillner (ELTE) Measures of Pseudorandomness




3-dimension lattices — Proof

t1

%]

.fo

o+din fi
x2=0

o+do
< Q(En) - Q2(Fn) - Q2(Gn)

E : €x1+di1 ~ Exytda
x1=0

x3=0

=] = = E DA
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3-dimension lattices — Proof

On the other hand to satisfy the Q2(nexFxG) = Q2(E)Q(F)Q2(G) let us
consider that

h={xz1:0<xz <t1}, bh={x2n:0<xzn <t}
I3 = {X3Z3 0 < x323 < t3}

sets and 0 < di1, di2, di3, da1, daa, do3 < N numbers (coordinates) for
which
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3-dimension lattices — Proof

Q(En) =
and

E : Ex1+di1 Exy+ds
0<x1z1<ty

Q(Fn) =
and

>, k&

2
0<x02<t>

Q(Gy) =

+d12 fX2+d22

0<x323<t3

Let d1 = (CJ’117 d12, d13) and d2 = (d21, d22, d23). Then

=] = = E DA
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3-dimension lattices — Proof

|51
Q(nexFxc) < | > n(x+d)n(x+da)| =D nlxa+ dia)n(x + do1)| -
xeB x1=0
tr t3
D0l + di2)n(xe + da2)| - | D nlxs + diz)n(xe + das)| =
x2=0 x3=0
t1 tr t3
= Z Ex1+d1 Ex1+dor | Z Fotdia Bot-doo | ° Z Ex3+d138x3+d3
X1:0 X2:0 X3:0

= N>Q2(En) - N*Qx(Fn) - N°>Q2(Gy)
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3-dimension lattices — Q3(7)

Consider the following pseudorandom measure of order 3 of #:

Q= > nx+d))n(x+d2)n(x+d3)

X1,X2,X3€h xhx 13

Q3(NExFxG) =

max{Q1(E), Q3(E)} - max{ Q1(F), Qs(F)} - max{Q:1(G), &(G)}
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3-dimension lattices — Q4(7)

Let x1,x2,x3 € 1 X lh X I3 and consider the following pseudorandom
measure of order 4 of n:

Qa(m) =D _n(x+d1)n(x+da) n (x + d3) 7 (x + da)

Q4(77E><F><G) > (N_é)?)
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Conclusion

@ New constructions for binary lattices based on pseudorandom
sequences

@ Explicit bounds for Qx measures in 2D and 3D

@ Trade-off: efficient generation vs. high-order pseudorandomness

@ Useful for cryptography and Monte Carlo simulations
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End

Thank you for your attention!
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