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ELTE

Central European Conference on Cryptology
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Motivation

Pseudorandom binary sequences are essential in cryptography, coding
theory, and simulations.

In 1997, Mauduit and Sárközy introduced measures in order to study
the pseudorandom properties of finite binary sequences:
well-distribution (W), correlation (Ck), and combined (Qk).

This work extends these concepts to multidimensional (2D and 3D)
binary lattices.
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Pseudorandom measures

Definition (Well-distribution measure)

For a binary sequence EN = (e1, e2, . . . , eN) ∈ {−1, 1}N of lenght N, write

U(EN , t, a, b) =
t∑

j=0

ea+jb

Then the well-distribution measure of EN is defined as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣∣∣∣∣∣
t∑

j=0

ea+jb

∣∣∣∣∣∣
where the maximum is taken over all a, b, t such that a, b, t ∈ N and
1 ≤ a ≤ a+ tb ≤ N.
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Pseudorandom measures

The well-distribution measure studies how close are the frequencies of the
+1’s and −1’s in arithmetic progressions (for a binary sequence with
strong pseudorandom properties these two quantities are expected to be
very close.)

If the subsequence (+1,+1) occurs much more frequently then the
subsequence (−1,−1), then it may cause problems in the applications, and
we cannot say that our sequence has strong pseudorandom properties.

In order to study connections of this type Mauduit and Sárközy introduced
the correlation and normality measures:
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Pseudorandom measures

Definition (Correlation measure)

For a binary sequence EN = (e1, e2, . . . , eN) ∈ {−1, 1}N of lenght N, and
for D = (d1, . . . , dℓ) with non-negative integers 0 ≤ d1 ≤ · · · ≤ dℓ, write

V (EN ,M,D) =
M∑
n=1

en+d1 · · · en+dℓ .

Then the correlation measure of order to ℓ of EN is defined as

Cℓ(EN) = max
M,D

|V (EN ,M,D)| = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1 · · · en+dℓ

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, d2, . . . , dℓ) and M such
that 0 ≤ d1 < · · · < dℓ < M + dℓ ≤ N.

Károly Müllner (ELTE) Measures of Pseudorandomness CECC 2025 6 / 49



Pseudorandom measures

Definition (Normality measure)

For a binary sequence EN = (e1, e2, . . . , eN) ∈ {−1, 1}N of lenght N, and
for X = (x1, . . . , xℓ) ∈ {−1,+1}ℓ write

T (EN ,M,X ) = |{n : 0 ≤ n < M, (en+1, en+2, . . . , en+ℓ)}| .

Then the normality measure of order ℓ of EN is defined as

Nℓ(EN) = max
M,X

∣∣∣T (EN ,M,X )−M/2ℓ
∣∣∣ ,

where the maximum is taken over all X = (x1, . . . , xℓ) ∈ {−1,+1}ℓ and M
such that 0 < M ̸= N − ℓ+ 1.
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Pseudorandom measures

The combined (well-distribution-correlation) pseudorandom measure
is a common generalization of the well-distribution and the correlation
measures.

This measure has an important role in the multidimensional extension
of the theory of pseudorandomness.

Definition (Combined measure)

For a binary sequence EN = (e1, e2, . . . , eN) ∈ {−1, 1}N of length N, and
for D = (d1, . . . , dℓ) with non-negative integers 0 ≤ d1 < · · · < dℓ

Z (EN , a, b, t,D) =
t∑

j=0

ea+jb+d1 · · · ea+jb+dℓ .
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Definition (Cont.)

Then the combined (well-distribution-correlation) measure of order ℓ of EN

is defined as

Qℓ(EN) = max
a,b,t,D

|Z (EN , a, b, t,D)| = max
a,b,t,D

∣∣∣∣∣∣
t∑

j=0

ea+jb+d1 · · · ea+jb+dℓ

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b, t and D = (d1, ..., dℓ) such that
all the subscripts a+ jb + di belong to {1, 2, ...,N}.

Károly Müllner (ELTE) Measures of Pseudorandomness CECC 2025 9 / 49



Pseudorandom measures in 1-dimension

Sequences EN = {e1, . . . , eN} ∈ {−1, 1}N

Well-distribution measure:

W (EN) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣
Correlation measure of order k:

Ck(EN) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1 · · · en+dk

∣∣∣∣∣
Combined measure:

Qk(EN) = max
a,b,t,D

∣∣∣∣∣∣
t−1∑
j=0

ea+jb+d1 · · · ea+jb+dk

∣∣∣∣∣∣
Károly Müllner (ELTE) Measures of Pseudorandomness CECC 2025 10 / 49



Binary Lattices

In order to study the multidimensional analog of pseudorandomness,
Hubert, Mauduit, and Sárközy [3] introduced the following definitions and
notations:

Denote by I nN the set of n-dimensional vectors whose coordinates are
integers between 0 and N − 1:

I nN = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . ,N − 1}}.

This set is called an n-dimensional N-lattice or, briefly, an N-lattice.
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Binary Lattices

In [3], the definition of binary sequences is extended to more dimensions
by considering functions of type

η(x) : I nN → {−1,+1}.

If x = (x1, x2, . . . , xn) so that η(x) = η((x1, x2, . . . , xn)) then we will
slightly simplify the notation by writing η(x) = η(x1, x2, . . . , xn).

Such a function can be visualized as the lattice points of the N-lattice
replaced by the two symbols + and −; thus, they are called binary
N-lattices. Binary 2- or 3 dimensional pseudorandom lattices also have
many applications, e.g., in the encryption of digital images or maps.
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Box N-lattice

The definition of I nN is extended to more general lattices in the following
way: Let u1,u2, . . .un be n linearly independent vectors, where the i-th

coordinate of ui is non-zero, and the other coordinates of ui are 0, so ui is
of the form (0, 0, . . . , 0, zi , 0, . . . , 0). Let t1, t2, . . . , tn be integers with
0 ≤ t1, t2, . . . , tn < N. Then we will call the set

Bn
N = {x = x1u1+x2u2+· · ·+xnun : 0 ≤ xi |ui| ≤ ti (< N) for i = 1, 2, . . . , n}

an n-dimensional box N-lattice or, briefly, a box N-lattice.
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Measures of Binary Lattices

In [3], Hubert, Mauduit and Sárközy introduced the following
pseudorandom measure of binary lattices:

Definition

Let
η : I nN → {−1,+1}.

The pseudorandom measure of order ℓ of η is defined by

Qℓ(η) = max
B,d1,...,dℓ

∣∣∣∣∣∑
x∈B

η(x+ d1) · · · η(x+ dℓ)

∣∣∣∣∣ ,
where the maximum is taken over all distinct d1,d2, . . . ,dℓ ∈ I nN and all
box N-lattices B such that B + d1, . . . ,B + dℓ ⊆ I nN .

Károly Müllner (ELTE) Measures of Pseudorandomness CECC 2025 14 / 49



Measures of Binary Lattices

Then, η is said to have strong pseudorandom properties, or, briefly, it is
considered a good pseudorandom lattice if the measure Qℓ(η) is small
(much smaller than the trivial upper bound Nn) for fixed n and ℓ and large
N.

This terminology is justified by the fact that, as was proved in [3], for a
truly random binary lattice defined on I nN and for fixed ℓ, the measure
Qℓ(η) is small (less than Nn/2 multiplied by a logarithmic factor).
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Measures of Binary Lattices

So far, numerous pseudorandom lattices have been generated with optimal
pseudorandom measures, see

K. Gyarmati, C. Mauduit, A. Sárközy Pseudorandom binary sequences
and lattices Acta Arithmetica 135 (2008) 181-197.

K. Gyarmati, A. Sárközy, C.L. Stewart On Legendre symbol lattices

K. Gyarmati, C. Mauduit, A. Sárközy On finite pseudorandom binary
lattices

L. Mérai, A construction of pseudorandom binary sequences using
rational functions, Unif. Distrib. Theory 4 (2009), no. 1, 35-49.

L. Mérai, Construction of pseudorandom binary lattices using elliptic
curves, Proc. Amer. Math. Soc. 139(2) (2011), 407-420.

L. Mérai, J. Rivat, A. Sárközy, The measures of pseudorandomness
and the NIST tests, Lecture Notes in Comput. Sci., 10737, Springer,
Cham, 2018, 197-216.
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Construction of Binary Lattices

For almost all constructions of pseudorandom binary lattices with strong
pseudorandom properties the generation of the elements of the lattice is
quite slow. However, in certain applications, we need to generate the
elements of the lattice quickly.

In these cases, we recommend the following algorithm: Let
E = (e1, e2, . . . , eN) and F = (f1, f2, . . . , fN) ∈ {−1,+1}N be two
pseudorandom binary sequences with strong pseudorandom properties;
then, we define the binary lattice η = ηE×F : I 2N → {−1, 1} by

η(x , y) = ex+1fy+1
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Measure of Binary Lattices

Then, the elements of the lattice can be generated rapidly since each
element can be obtained by a simple multiplication, where the
multiplicands are all 1 or −1.

The question is, how large are the pseudorandom measures of the lattice?
I can determine the exact values of Q2 and Q2k+1 of the lattice, but
unfortunately, the value of Q2k is always large if k ≥ 2:

Theorem (Case of odd k)

Let E ∈ {−1,+1}N and F ∈ {−1,+1}N be pseudorandom binary
sequences. Then,

Q2ℓ+1(ηE×F ) =

max{Q1(E ),Q3(E ), . . . ,Q2ℓ+1(E )}max{Q1(F ),Q3(F ), . . . ,Q2ℓ+1(F )}
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Proof of Theorem

What is the situation in case of odd k? We are trying to estimate the Q
combined measure with the maximum of pseudorandom measure of order
ℓ+ 1 combined measures, where ℓ = 1, 2, . . . , k .
In k = 2ℓ+ 1 we have box-lattice B and k pieces of coordinates
d1 = (d11, d12), . . . ,dk = (dk1, dk2)

Qk(ηE×F ) ≤

≤

∣∣∣∣∣∣
∑

x1,x2∈I1×I2

η ((x1, x2) + (d11, d12)) · · · η ((x1, x2) + (dk1, dk2))

∣∣∣∣∣∣
=

∣∣∣∣∣
t1∑

x1=0

η(x1 + d11) · · · η(x1 + dk1)

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

η(x2 + d12) · · · η(x2 + dk2)

∣∣∣∣∣
=

∣∣∣∣∣
t1∑

x1=0

ex1+d11 · · · ex1+dk1

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

fx2+d12 · · · fx2+dk2

∣∣∣∣∣
= max{Q1(E ),Q3(E ), . . . ,Qk(E )} ·max{Q1(F ),Q3(F ) . . . ,Qk(F )}
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Proof of Theorem

Now we prove

Qk(ηE×F ) ≥
max{Q1(E ),Q3(E ), . . . ,Qk(E )} ·max{Q1(F ),Q3(F ) . . . ,Qk(F )}

Consider the numbers 0 < d11, d12, . . . , dk1, dk2 for which

Qk(E ) =

t1∑
x1=0

ex1+d11 · · · ex1+dk1

and

Qk(F ) =

t2∑
x2=0

fx2+d12 · · · fx2+dk2

Define d1 = (d11, d12),d2 = (d21, d22), . . .dk = (dk1, dk2). Then
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Proof of Theorem

Qk(ηE×F ) ≥

∣∣∣∣∣∑
x∈B

η(x+ d1)η(x+ d2) · · · η(x+ dk)

∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑

x1,x2∈I1×I2

η ((x1, x2) + (d11, d12)) · · · η ((x1, x2) + (dk1, dk2))

∣∣∣∣∣∣
=

∣∣∣∣∣
t1∑

x1=0

η ((x1 + d11) · · · η ((x1 + dk1)

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

η ((x2 + d12) · · · η ((x2 + dk2)

∣∣∣∣∣
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Proof of Theorem

=

∣∣∣∣∣
t1∑

x1=0

ex1+d11 · · · ex1+dk1

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

fx2+d12 · · · fx2+dk2

∣∣∣∣∣
= max{Q1(E ),Q3(E ), . . . ,Qk(E )} ·max{Q1(F ),Q3(F ) . . . ,Qk(F )}
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Measure of Binary Lattices

Theorem (ℓ = 2)

Let E ∈ {−1,+1}N and F ∈ {−1,+1}N be pseudorandom binary
sequences. Then,

Q2(ηE×F ) = max{NQ2(E ),NQ2(F )}
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Proof of Theorem

First we prove that

Q2(ηE×F ) ≤ max{N · Q2(E ),N · Q2(F )}

Consider the box-lattice B and vectors d1 = (d11, d12) and d2 = (d21, d22)
for which

Q2(ηE×F ) =

∣∣∣∣∣∑
x∈B

η(x+ d1)η(x+ d2)

∣∣∣∣∣ .
Then write B of the form

B = {(x1z1, x2z2) : 0 ≤ x1z1 ≤ t1, 0 ≤ x2z2 ≤ t2} = I1 × I2

where

I1 = {x1z1 : 0 ≤ x1z1 ≤ t1} I2 = {x2z2 : 0 ≤ x2z2 ≤ t2}.
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Proof of Theorem

Then

Q2(ηE×F ) =

=

∣∣∣∣∣∣
∑

x1,x2∈I1×I2

η ((x1, x2) + (d11, d12)) η ((x1, x2) + (d21, d22))

∣∣∣∣∣∣
=

∣∣∣∣∣
t1∑

x1=0

η(x1 + d11)η(x1 + d21)

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

η(x2 + d21)η(x2 + d22)

∣∣∣∣∣
=

∣∣∣∣∣
t1∑

x1=0

ex1+d11 · ex1+d21

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

fx2+d12 · fx2+d22

∣∣∣∣∣ ≤ max{NQ2(E ),NQ2(F )}
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Proof of Theorem

Next we prove the Q2(ηE×F ) ≥ Q2(E )× Q2(F ) consider the sets

I1 = {x1z1 : 0 ≤ x1z1 ≤ t1} and I2 = {x2z2 : 0 ≤ x2z2 ≤ t2}

and numbers 0 ≤ d11, d21, d12, d22 ≤ N for which

Q2(E ) =
∑

0≤x1z1≤t1

ex1+d11ex1+d21

and
Q2(F ) =

∑
0≤x2z2≤t1

fx2+d12fx2+d22 .
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Proof of Theorem

Define d1 and d2 by d1 = (d11, d12) and d2 = (d21, d22). Then

Q2(ηE×F ) ≥

∣∣∣∣∣∑
x∈B

η(x+ d1)η(x+ d2)

∣∣∣∣∣ =
∣∣∣∣∣

t1∑
x1=0

η(x1 + d11)η(x1 + d21)

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

η(x2 + d12)η(x2 + d22)

∣∣∣∣∣ =
∣∣∣∣∣

t1∑
x1=0

ex1+d11 · ex1+d21

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

fx2+d12 · fx2+d22

∣∣∣∣∣ = max{NQ2(E ),NQ2(F )}.

with this we proved that Q2(ηE×F ) = max{N · Q2(E ),N · Q2(F )}
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Measure of Binary Lattices

Theorem (Even case)

Let E ∈ {−1,+1}N and F ∈ {−1,+1}N be pseudorandom binary
sequences and ℓ ≥ 2. Then,

Q2ℓ(ηE×F ) ≥ (N − ℓ+ 2)2
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Proof of Theorem

Let’s consider the Q2ℓ. Let x = (x1, x2), d1 = (0, 0), d2 = (0, 1),
d3 = (1, 1), . . . ,d2ℓ = (ℓ− 1, 0)

Q2ℓ(ηE×F ) ≥

∣∣∣∣∣∣∣
∑

x∈I 2N−1

η(x+ d1)η(x+ d2) . . . η(x+ d2ℓ)

∣∣∣∣∣∣∣
=

∣∣∣∣∣
N−ℓ+1∑
x1=0

N−ℓ+1∑
x2=0

η(x1, x2)η(x1, x2 + 1) . . . η(x1, x2 + ℓ− 1)

∣∣∣∣∣
=

∣∣∣∣∣
N−ℓ+1∑
x1=0

N−ℓ+1∑
x2=0

ex1+1fx2+1ex1+1fx2+2ex1+2fx2+1 . . . ex1+ℓ−1fx2+1

∣∣∣∣∣
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Proof of Theorem

=

∣∣∣∣∣
N−ℓ+1∑
x1=0

e2x1+1 · e2x1+2 . . . e
2
x1+ℓ−1

∣∣∣∣∣ ·
∣∣∣∣∣
N−ℓ+1∑
x2=0

f 2x2+1f
2
x2+2 . . . f

2
x2+ℓ−1

∣∣∣∣∣
=

∣∣∣∣∣∑
x1

∑
x2

1

∣∣∣∣∣ = (N − ℓ+ 2)2
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Binary Lattices

What method should we use to choose coordinate points for any ℓ? If we
plot the points ℓ = 2, 3, . . . we can notice some regularity. Consider the
following coordinates:

(i , i + 1) if i = 0, 1, . . . , ℓ− 2

(i , i) if i = 0, 1, . . . , ℓ− 1

(ℓ− 1, 0)
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Binary Lattices

ℓ− 1

ℓ− 1

1 2 3 4

1

2

3

4

Figure: Step function shape in the coordinate system
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Measure of Binary Lattices

This generation method is viable when we want to use the lattices in
applications where it is sufficient that the measures Q1,Q2, and Q3 are
small (e.g., Monte Carlo methods).

If we still need Q4 to be small (e.g., in encryptions), we need to look for
another method.

Note also that Gyarmati [1] generated a sequence of length N2 from the
lattice η : I 2N → {−1,+1}, by writing the rows of the lattice consecutively
from the bottom up to the top. She proved that if, for the lattice
η : I 2n → {−1,+1}, Qk is small, then the resulting sequence of length N2

has a small Ck measure.
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Measure of Binary Lattices

By incorporating this method into our previous construction, we can
generate a lattice from two sequences E and F ∈ {−1,+1}N , and then a
sequence of length N2, by writing the rows of the lattice consecutively in
sequence from the bottom up to the top.

Then, the resulting sequence of length N2 has small pseudorandom
measures W , C2, and C3 if the measures Q2(E ),Q2(F ),Q3(E ), and Q3(F )
of the original sequences of length N are small. With this technique, we
obtained a much longer sequence (length N2) from two short sequences
(length N), such that the low-order pseudorandomness measures W ,C2,
and C3 are close to optimal.
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Binary Lattices

Remark

We saw that Q1,Q2,Q3 are small and Q4 (and Q2ℓ) for ℓ ≥ 2 are large.

In case of k ≥ 5 the calculation of Qk is hopelessly slow with computer as
well, but in this paper we focus on that applications in which Q1,Q2,Q3

are small because this garanties the pseudorandomness of the applications.
Summarize above results we have:

Q1 = W (E ) ·W (F )

Q2 = max{NQ2(E ),NQ2(F )}
Q3 = max{Q1(E ),Q3(E )} ·max{Q1(F ),Q3(F )}
Q4 ≥ (N − ℓ+ 1)2
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3-dimension lattices

Let x = (x1, x2, x3), d1 = (d11, d12, d13) and d2 = (d21, d22, d23). Let
B, d1, d2 fixed and

B3
N = {(x1z1, x2z2, x3z3) : x1, x2, x3 ∈ {0, 1, · · · ,N − 1}} = I1 × I2 × I3

where
I1 = {x1z1 : 0 ≤ x1z1 ≤ t1},
I2 = {x2z2 : 0 ≤ x2z2 ≤ t2},
I3 = {x3z3 : 0 ≤ x3z3 ≤ t3}
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3-dimension lattices – Q2(η)

Consider the following pseudorandom measure of order 2 of η:

Q2(ηE×F×G ) = max

∣∣∣∣∣∣
∑

x1,x2,x3∈I1×I2×I3

η (x+ d1) η (x+ d2)

∣∣∣∣∣∣
Theorem

Q2(ηE×F×G ) = max{N2 · Q2(EN),N
2 · Q2(FN),N

2 · Q2(GN)}
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3-dimension lattices – Proof

At first we prove that

Q2(ηE×F×G ) ≤ N2Q2(EN) · N2Q2(FN) · N2 · Q2(GN)

Let B a box lattice and d1 = (d11, d12, d13) and d2 = (d21, d22, d23)
vectors and let

B = {x1z1, x2z2, x3z3 : 0 ≤ x1z1 ≤ t1, 0 ≤ x2z2 ≤ t2, 0 ≤ x3z3 ≤ t3}
= I1 × I2 × I3

where

I1 = {x1z1 : 0 ≤ x1z1 ≤ t1}, I2 = {x2z2 : 0 ≤ x2z2 ≤ t2},
I3 = {x3z3 : 0 ≤ x3z3 ≤ t3}
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3-dimension lattices – Proof

Then

Q2(ηE×F×G ) =

∣∣∣∣∣∣
∑

x1,x2,x3∈I1×I2×I3

η (x+ d1) η (x+ d2)

∣∣∣∣∣∣ =

=

∣∣∣∣∣
t1∑

x1=0

η(x1 + d11)η(x1 + d21)

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

η(x2 + d12)η(x2 + d22)

∣∣∣∣∣
·

∣∣∣∣∣
t3∑

x3=0

η(x3 + d13)η(x2 + d23)

∣∣∣∣∣
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3-dimension lattices – Proof

=

∣∣∣∣∣
t1∑

x1=0

ex1+d11 · ex1+d21

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

fx2+d12 · fx2+d22

∣∣∣∣∣ ·
∣∣∣∣∣

t3∑
x3=0

gx3+d13 · gx3+d23

∣∣∣∣∣
≤ Q2(EN) · Q2(FN) · Q2(GN)
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3-dimension lattices – Proof

On the other hand to satisfy the Q2(ηE×F×G ) = Q2(E )Q2(F )Q2(G ) let us
consider that

I1 = {x1z1 : 0 ≤ x1z1 ≤ t1}, I2 = {x2z2 : 0 ≤ x2z2 ≤ t2},
I3 = {x3z3 : 0 ≤ x3z3 ≤ t3}

sets and 0 ≤ d11, d12, d13, d21, d22, d23 ≤ N numbers (coordinates) for
which
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3-dimension lattices – Proof

Q2(EN) =
∑

0≤x1z1≤t1

ex1+d11ex1+d21

and
Q2(FN) =

∑
0≤x2z2≤t2

fx2+d12fx2+d22

and
Q2(GN) =

∑
0≤x3z3≤t3

gx3+d13fx3+d23

Let d1 = (d11, d12, d13) and d2 = (d21, d22, d23). Then
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3-dimension lattices – Proof

Q2(ηE×F×G ) ≤

∣∣∣∣∣∑
x∈B

η (x+ d1) η (x+ d2)

∣∣∣∣∣ =
∣∣∣∣∣

t1∑
x1=0

η(x1 + d11)η(x1 + d21)

∣∣∣∣∣ ·

·

∣∣∣∣∣
t2∑

x2=0

η(x2 + d12)η(x2 + d22)

∣∣∣∣∣ ·
∣∣∣∣∣

t3∑
x3=0

η(x3 + d13)η(x2 + d23)

∣∣∣∣∣ =

=

∣∣∣∣∣
t1∑

x1=0

ex1+d11ex1+d21

∣∣∣∣∣ ·
∣∣∣∣∣

t2∑
x2=0

fx2+d12fx2+d22

∣∣∣∣∣ ·
∣∣∣∣∣

t3∑
x3=0

gx3+d13gx3+d23

∣∣∣∣∣
= N2Q2(EN) · N2Q2(FN) · N2Q2(GN)

Károly Müllner (ELTE) Measures of Pseudorandomness CECC 2025 43 / 49



3-dimension lattices – Q3(η)

Consider the following pseudorandom measure of order 3 of η:

Q3(η) =
∑

x1,x2,x3∈I1×I2×I3

η (x+ d1)) η (x+ d2) η (x+ d3)

Theorem

Q3(ηE×F×G ) =

max{Q1(E ),Q3(E )} ·max{Q1(F ),Q3(F )} ·max{Q1(G ),Q3(G )}
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3-dimension lattices – Q4(η)

Let x1, x2, x3 ∈ I1 × I2 × I3 and consider the following pseudorandom
measure of order 4 of η:

Q4(η) =
∑
xi

η (x+ d1) η (x+ d2) η (x+ d3) η (x+ d4)

Theorem

Q4(ηE×F×G ) ≥ (N − ℓ)3
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Conclusion

New constructions for binary lattices based on pseudorandom
sequences

Explicit bounds for Qk measures in 2D and 3D

Trade-off: efficient generation vs. high-order pseudorandomness

Useful for cryptography and Monte Carlo simulations

Károly Müllner (ELTE) Measures of Pseudorandomness CECC 2025 46 / 49



End

Thank you for your attention!
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K. Gyarmati, C. Mauduit, A. Sárközy Pseudorandom binary sequences
and lattices Acta Arithmetica 135 (2008) 181-197.
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