On the Measures of Pseudorandomness of Binary Lattices

Károly Müllner

ELTE

Central European Conference on Cryptology

Károly Müllner (ELTE)

Measures of Pseudorandomness

1/49

Outline

Károly	Müllner	(ELTE)
		•

æ

୬ < ୍ 2 / 49

イロト イポト イヨト イヨト

- Pseudorandom binary sequences are essential in cryptography, coding theory, and simulations.
- In 1997, Mauduit and Sárközy introduced measures in order to study the pseudorandom properties of finite binary sequences: well-distribution (W), correlation (C_k), and combined (Q_k).
- This work extends these concepts to multidimensional (2D and 3D) binary lattices.

Pseudorandom measures

Definition (Well-distribution measure)

For a binary sequence $E_N = (e_1, e_2, \dots, e_N) \in \{-1, 1\}^N$ of lenght N, write

$$U(E_N, t, a, b) = \sum_{j=0}^t e_{a+jb}$$

Then the well-distribution measure of E_N is defined as

$$W(E_N) = \max_{a,b,t} |U(E_N, t, a, b)| = \max_{a,b,t} \left| \sum_{j=0}^t e_{a+jb} \right|$$

where the maximum is taken over all a, b, t such that $a, b, t \in \mathbb{N}$ and $1 \le a \le a + tb \le N$.

イロト 不得 トイヨト イヨト

The well-distribution measure studies how close are the frequencies of the +1's and -1's in arithmetic progressions (for a binary sequence with strong pseudorandom properties these two quantities are expected to be very close.)

If the subsequence (+1, +1) occurs much more frequently then the subsequence (-1, -1), then it may cause problems in the applications, and we cannot say that our sequence has strong pseudorandom properties.

In order to study connections of this type Mauduit and Sárközy introduced the correlation and normality measures:

Pseudorandom measures

Definition (Correlation measure)

For a binary sequence $E_N = (e_1, e_2, \dots, e_N) \in \{-1, 1\}^N$ of lenght N, and for $D = (d_1, \dots, d_\ell)$ with non-negative integers $0 \le d_1 \le \dots \le d_\ell$, write

$$V(E_N, M, D) = \sum_{n=1}^M e_{n+d_1} \cdots e_{n+d_\ell}.$$

Then the correlation measure of order to ℓ of E_N is defined as

$$C_{\ell}(E_N) = \max_{M,D} |V(E_N, M, D)| = \max_{M,D} \left| \sum_{n=1}^M e_{n+d_1} \cdots e_{n+d_\ell} \right|,$$

where the maximum is taken over all $D = (d_1, d_2, ..., d_\ell)$ and M such that $0 \le d_1 < \cdots < d_\ell < M + d_\ell \le N$.

3

イロト イヨト イヨト --

Definition (Normality measure)

For a binary sequence $E_N = (e_1, e_2, \dots, e_N) \in \{-1, 1\}^N$ of lenght N, and for $X = (x_1, \dots, x_\ell) \in \{-1, +1\}^\ell$ write

 $T(E_N, M, X) = |\{n : 0 \le n < M, (e_{n+1}, e_{n+2}, \dots, e_{n+\ell})\}|.$

Then the normality measure of order ℓ of E_N is defined as

$$N_{\ell}(E_N) = \max_{M,X} \left| T(E_N, M, X) - M/2^{\ell} \right|,$$

where the maximum is taken over all $X = (x_1, \ldots, x_\ell) \in \{-1, +1\}^\ell$ and M such that $0 < M \neq N - \ell + 1$.

Pseudorandom measures

- The combined (well-distribution-correlation) pseudorandom measure is a common generalization of the well-distribution and the correlation measures.
- This measure has an important role in the multidimensional extension of the theory of pseudorandomness.

Definition (Combined measure)

For a binary sequence $E_N = (e_1, e_2, \dots, e_N) \in \{-1, 1\}^N$ of length N, and for $D = (d_1, \dots, d_\ell)$ with non-negative integers $0 \le d_1 < \dots < d_\ell$

$$Z(E_N,a,b,t,D) = \sum_{j=0}^t e_{a+jb+d_1} \cdots e_{a+jb+d_\ell}.$$

Definition (Cont.)

Then the combined (well-distribution-correlation) measure of order ℓ of E_N is defined as

$$Q_{\ell}(E_N) = \max_{a,b,t,D} |Z(E_N,a,b,t,D)| = \max_{a,b,t,D} \left| \sum_{j=0}^t e_{a+jb+d_1} \cdots e_{a+jb+d_\ell} \right|,$$

where the maximum is taken over all a, b, t and $D = (d_1, ..., d_\ell)$ such that all the subscripts $a + jb + d_i$ belong to $\{1, 2, ..., N\}$.

Pseudorandom measures in 1-dimension

• Sequences
$$E_{\mathcal{N}} = \{e_1, \dots, e_{\mathcal{N}}\} \in \{-1, 1\}^{\mathcal{N}}$$

• Well-distribution measure:

$$W(E_N) = \max_{a,b,t} \left| \sum_{j=0}^{t-1} e_{a+jb} \right|$$

• Correlation measure of order k:

$$C_k(E_N) = \max_{M,D} \left| \sum_{n=1}^M e_{n+d_1} \cdots e_{n+d_k} \right|$$

• Combined measure:

$$Q_k(E_N) = \max_{a,b,t,D} \left| \sum_{j=0}^{t-1} e_{a+jb+d_1} \cdots e_{a+jb+d_k} \right|$$

э

In order to study the multidimensional analog of pseudorandomness, Hubert, Mauduit, and Sárközy [3] introduced the following definitions and notations:

Denote by I_N^n the set of *n*-dimensional vectors whose coordinates are integers between 0 and N - 1:

$$I_N^n = \{ \mathbf{x} = (x_1, \dots, x_n) : x_1, \dots, x_n \in \{0, 1, \dots, N-1\} \}.$$

This set is called an *n*-dimensional *N*-lattice or, briefly, an *N*-lattice.

・ 同 ト ・ ヨ ト ・ ヨ ト …

In [3], the definition of binary sequences is extended to more dimensions by considering functions of type

$$\eta(\mathbf{x}): I_N^n \to \{-1,+1\}.$$

If $\mathbf{x} = (x_1, x_2, \dots, x_n)$ so that $\eta(\mathbf{x}) = \eta((x_1, x_2, \dots, x_n))$ then we will slightly simplify the notation by writing $\eta(\mathbf{x}) = \eta(x_1, x_2, \dots, x_n)$.

Such a function can be visualized as the lattice points of the *N*-lattice replaced by the two symbols + and -; thus, they are called binary *N*-lattices. Binary 2- or 3 dimensional pseudorandom lattices also have many applications, e.g., in the encryption of digital images or maps.

人口下 人間下 人居下 人居下 一居

The definition of I_N^n is extended to more general lattices in the following way: Let $\mathbf{u_1}, \mathbf{u_2}, \ldots, \mathbf{u_n}$ be *n* linearly independent vectors, where the *i*-th coordinate of $\mathbf{u_i}$ is non-zero, and the other coordinates of $\mathbf{u_i}$ are 0, so $\mathbf{u_i}$ is of the form $(0, 0, \ldots, 0, z_i, 0, \ldots, 0)$. Let t_1, t_2, \ldots, t_n be integers with $0 \le t_1, t_2, \ldots, t_n < N$. Then we will call the set

$$B_N^n = \{ \mathbf{x} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 + \dots + x_n \mathbf{u}_n : 0 \le x_i | \mathbf{u}_i | \le t_i (< N) \text{ for } i = 1, 2, \dots, n \}$$

an *n*-dimensional box N-lattice or, briefly, a box N-lattice.

・ 同 ト ・ ヨ ト ・ ヨ ト …

In [3], Hubert, Mauduit and Sárközy introduced the following pseudorandom measure of binary lattices:

Definition

Let

$$\eta:I_N^n\to\{-1,+1\}.$$

The pseudorandom measure of order ℓ of η is defined by

$$Q_{\ell}(\eta) = \max_{B, d_1, \dots, d_{\ell}} \left| \sum_{\mathbf{x} \in B} \eta(\mathbf{x} + \mathbf{d_1}) \cdots \eta(\mathbf{x} + \mathbf{d}_{\ell}) \right|,$$

where the maximum is taken over all distinct $\mathbf{d}_1, \mathbf{d}_2, \ldots, \mathbf{d}_\ell \in I_N^n$ and all box N-lattices B such that $B + \mathbf{d}_1, \ldots, B + \mathbf{d}_\ell \subseteq I_N^n$.

Then, η is said to have strong pseudorandom properties, or, briefly, it is considered a good pseudorandom lattice if the measure $Q_{\ell}(\eta)$ is small (much smaller than the trivial upper bound N^n) for fixed n and ℓ and large N.

This terminology is justified by the fact that, as was proved in [3], for a truly random binary lattice defined on I_N^n and for fixed ℓ , the measure $Q_\ell(\eta)$ is small (less than $N^{n/2}$ multiplied by a logarithmic factor).

Measures of Binary Lattices

So far, numerous pseudorandom lattices have been generated with optimal pseudorandom measures, see

- K. Gyarmati, C. Mauduit, A. Sárközy *Pseudorandom binary sequences* and lattices Acta Arithmetica 135 (2008) 181-197.
- K. Gyarmati, A. Sárközy, C.L. Stewart On Legendre symbol lattices
- K. Gyarmati, C. Mauduit, A. Sárközy *On finite pseudorandom binary lattices*
- L. Mérai, A construction of pseudorandom binary sequences using rational functions, Unif. Distrib. Theory 4 (2009), no. 1, 35-49.
- L. Mérai, *Construction of pseudorandom binary lattices using elliptic curves*, Proc. Amer. Math. Soc. 139(2) (2011), 407-420.
- L. Mérai, J. Rivat, A. Sárközy, *The measures of pseudorandomness and the NIST tests*, Lecture Notes in Comput. Sci., 10737, Springer, Cham, 2018, 197-216.

э

16 / 49

イロト 不得下 イヨト イヨト

For almost all constructions of pseudorandom binary lattices with strong pseudorandom properties the generation of the elements of the lattice is quite slow. However, in certain applications, we need to generate the elements of the lattice quickly.

In these cases, we recommend the following algorithm: Let $E = (e_1, e_2, \ldots, e_N)$ and $F = (f_1, f_2, \ldots, f_N) \in \{-1, +1\}^N$ be two pseudorandom binary sequences with strong pseudorandom properties; then, we define the binary lattice $\eta = \eta_{E \times F} : I_N^2 \to \{-1, 1\}$ by

$$\eta(x,y)=e_{x+1}f_{y+1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then, the elements of the lattice can be generated rapidly since each element can be obtained by a simple multiplication, where the multiplicands are all 1 or -1.

The question is, how large are the pseudorandom measures of the lattice? I can determine the exact values of Q_2 and Q_{2k+1} of the lattice, but unfortunately, the value of Q_{2k} is always large if $k \ge 2$:

Theorem (Case of odd k)

Let $E \in \{-1,+1\}^N$ and $F \in \{-1,+1\}^N$ be pseudorandom binary sequences. Then,

 $Q_{2\ell+1}(\eta_{E\times F}) = \max\{Q_1(E), Q_3(E), \dots, Q_{2\ell+1}(E)\} \max\{Q_1(F), Q_3(F), \dots, Q_{2\ell+1}(F)\}$

What is the situation in case of odd k? We are trying to estimate the Q combined measure with the maximum of pseudorandom measure of order $\ell + 1$ combined measures, where $\ell = 1, 2, \ldots, k$. In $k = 2\ell + 1$ we have box-lattice B and k pieces of coordinates $\mathbf{d_1} = (d_{11}, d_{12}), \dots, \mathbf{d_k} = (d_{k1}, d_{k2})$ $Q_k(\eta_{F \times F}) <$ $\leq \left| \sum_{x_1, x_2 \in I_1 \times I_2} \eta \left((x_1, x_2) + (d_{11}, d_{12}) \right) \cdots \eta \left((x_1, x_2) + (d_{k1}, d_{k2}) \right) \right.$ $= \left| \sum_{x_1=0}^{t_1} \eta(x_1 + d_{11}) \cdots \eta(x_1 + d_{k1}) \right| \cdot \left| \sum_{x_2=0}^{t_2} \eta(x_2 + d_{12}) \cdots \eta(x_2 + d_{k2}) \right|$ $= \left| \sum_{x_1=0}^{t_1} e_{x_1+d_{11}} \cdots e_{x_1+d_{k1}} \right| \cdot \left| \sum_{x_1=0}^{t_2} f_{x_2+d_{12}} \cdots f_{x_2+d_{k2}} \right|$ $= \max\{Q_1(E), Q_3(E), \dots, Q_k(E)\} \cdot \max\{Q_1(F), Q_3(F), \dots, Q_k(F)\}$ 200

19/49

Now we prove

$$Q_k(\eta_{E\times F}) \ge \max\{Q_1(E), Q_3(E), \dots, Q_k(E)\} \cdot \max\{Q_1(F), Q_3(F), \dots, Q_k(F)\}$$

Consider the numbers $0 < d_{11}, d_{12}, \ldots, d_{k1}, d_{k2}$ for which

$$Q_k(E) = \sum_{x_1=0}^{t_1} e_{x_1+d_{11}} \cdots e_{x_1+d_{k1}}$$

and

$$Q_k(F) = \sum_{x_2=0}^{t_2} f_{x_2+d_{12}} \cdots f_{x_2+d_{k_2}}$$

Define $\mathbf{d_1} = (d_{11}, d_{12}), \mathbf{d_2} = (d_{21}, d_{22}), \dots \mathbf{d_k} = (d_{k1}, d_{k2}).$ Then

イロト イポト イヨト イヨト

э

$$Q_k(\eta_{E imes F}) \geq \left| \sum_{\mathbf{x} \in B} \eta(\mathbf{x} + \mathbf{d_1}) \eta(\mathbf{x} + \mathbf{d_2}) \cdots \eta(\mathbf{x} + \mathbf{d_k}) \right| =$$

$$= \left| \sum_{x_1, x_2 \in I_1 \times I_2} \eta \left((x_1, x_2) + (d_{11}, d_{12}) \right) \cdots \eta \left((x_1, x_2) + (d_{k1}, d_{k2}) \right) \right|$$

$$= \left|\sum_{x_1=0}^{t_1} \eta\left((x_1+d_{11})\cdots \eta\left((x_1+d_{k1})\right)\right| \cdot \left|\sum_{x_2=0}^{t_2} \eta\left((x_2+d_{12})\cdots \eta\left((x_2+d_{k2})\right)\right)\right|$$

Ξ.

990

イロト イヨト イヨト イヨト

ı.

$$= \left| \sum_{x_1=0}^{t_1} e_{x_1+d_{11}} \cdots e_{x_1+d_{k1}} \right| \cdot \left| \sum_{x_2=0}^{t_2} f_{x_2+d_{12}} \cdots f_{x_2+d_{k2}} \right|$$

 $= \max\{Q_1(E), Q_3(E), \dots, Q_k(E)\} \cdot \max\{Q_1(F), Q_3(F) \dots, Q_k(F)\}$

イロト 不得 トイヨト イヨト

3

Theorem $(\ell = 2)$

Let $E \in \{-1,+1\}^N$ and $F \in \{-1,+1\}^N$ be pseudorandom binary sequences. Then,

$$Q_2(\eta_{E \times F}) = \max\{NQ_2(E), NQ_2(F)\}$$

Károly Müllner (ELTE)

Measures of Pseudorandomness

(日)

First we prove that

$$Q_2(\eta_{E\times F}) \le \max\{N \cdot Q_2(E), N \cdot Q_2(F)\}$$

Consider the box-lattice B and vectors $\mathbf{d_1} = (d_{11}, d_{12})$ and $\mathbf{d_2} = (d_{21}, d_{22})$ for which

$$Q_2(\eta_{E\times F}) = \left| \sum_{\mathbf{x}\in B} \eta(\mathbf{x} + \mathbf{d_1}) \eta(\mathbf{x} + \mathbf{d_2}) \right|.$$

Then write B of the form

$$B = \{(x_1z_1, x_2z_2) : 0 \le x_1z_1 \le t_1, 0 \le x_2z_2 \le t_2\} = l_1 \times l_2$$

where

$$I_1 = \{x_1z_1 : 0 \le x_1z_1 \le t_1\} \qquad I_2 = \{x_2z_2 : 0 \le x_2z_2 \le t_2\}.$$

3

A (10) A (10)

Then

$$Q_{2}(\eta_{E\times F}) = \\ = \left| \sum_{x_{1}, x_{2} \in I_{1} \times I_{2}} \eta \left((x_{1}, x_{2}) + (d_{11}, d_{12}) \right) \eta \left((x_{1}, x_{2}) + (d_{21}, d_{22}) \right) \right.$$

$$= \left| \sum_{x_1=0}^{t_1} \eta(x_1 + d_{11}) \eta(x_1 + d_{21}) \right| \cdot \left| \sum_{x_2=0}^{t_2} \eta(x_2 + d_{21}) \eta(x_2 + d_{22}) \right|$$

$$= \left| \sum_{x_1=0}^{t_1} e_{x_1+d_{11}} \cdot e_{x_1+d_{21}} \right| \cdot \left| \sum_{x_2=0}^{t_2} f_{x_2+d_{12}} \cdot f_{x_2+d_{22}} \right| \le \max\{NQ_2(E), NQ_2(F)\}$$

Ξ.

590

25 / 49

イロン イ理 とくほとう ほとう

Next we prove the $Q_2(\eta_{E \times F}) \ge Q_2(E) \times Q_2(F)$ consider the sets

 $I_1 = \{x_1z_1 : 0 \le x_1z_1 \le t_1\} \quad \text{and} \quad I_2 = \{x_2z_2 : 0 \le x_2z_2 \le t_2\}$

and numbers $0 \leq d_{11}, d_{21}, d_{12}, d_{22} \leq N$ for which

$$Q_2(E) = \sum_{0 \le x_1 z_1 \le t_1} e_{x_1 + d_{11}} e_{x_1 + d_{21}}$$

$$Q_2(F) = \sum_{0 \le x_2 z_2 \le t_1} f_{x_2 + d_{12}} f_{x_2 + d_{22}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Define d_1 and d_2 by $d_1 = (d_{11}, d_{12})$ and $d_2 = (d_{21}, d_{22})$. Then

$$Q_2(\eta_{E \times F}) \ge \left| \sum_{\mathbf{x} \in B} \eta(\mathbf{x} + \mathbf{d_1}) \eta(\mathbf{x} + \mathbf{d_2}) \right| = 0$$

$$\left|\sum_{x_1=0}^{t_1}\eta(x_1+d_{11})\eta(x_1+d_{21})\right|\cdot \left|\sum_{x_2=0}^{t_2}\eta(x_2+d_{12})\eta(x_2+d_{22})\right|=$$

$$\left|\sum_{x_1=0}^{t_1} e_{x_1+d_{11}} \cdot e_{x_1+d_{21}}\right| \cdot \left|\sum_{x_2=0}^{t_2} f_{x_2+d_{12}} \cdot f_{x_2+d_{22}}\right| = \max\{NQ_2(E), NQ_2(F)\}.$$

with this we proved that $Q_2(\eta_{E \times F}) = \max\{N \cdot Q_2(E), N \cdot Q_2(F)\}$

э

27 / 49

Theorem (Even case)

Let $E \in \{-1, +1\}^N$ and $F \in \{-1, +1\}^N$ be pseudorandom binary sequences and $\ell \ge 2$. Then,

$$Q_{2\ell}(\eta_{E imes F}) \geq (N-\ell+2)^2$$

Károly Müllner (ELTE)

Measures of Pseudorandomness

3

- 4 同 6 4 日 6 4 日 6 4

Let's consider the $Q_{2\ell}$. Let $\mathbf{x} = (x_1, x_2)$, $\mathbf{d_1} = (0, 0)$, $\mathbf{d_2} = (0, 1)$, $\mathbf{d_3} = (1, 1), \dots, \mathbf{d_{2\ell}} = (\ell - 1, 0)$

$$Q_{2\ell}(\eta_{E\times F}) \geq \left| \sum_{\mathbf{x}\in I_{N-1}^2} \eta(\mathbf{x} + \mathbf{d_1}) \eta(\mathbf{x} + \mathbf{d_2}) \dots \eta(\mathbf{x} + \mathbf{d_2}_{\ell}) \right|$$

$$= \left| \sum_{x_1=0}^{N-\ell+1} \sum_{x_2=0}^{N-\ell+1} \eta(x_1, x_2) \eta(x_1, x_2+1) \dots \eta(x_1, x_2+\ell-1) \right|$$

$$= \left| \sum_{x_1=0}^{N-\ell+1} \sum_{x_2=0}^{N-\ell+1} e_{x_1+1} f_{x_2+1} e_{x_1+1} f_{x_2+2} e_{x_1+2} f_{x_2+1} \dots e_{x_1+\ell-1} f_{x_2+1} \right|$$

Károly Müllner (ELTE)

3

29 / 49

イロト 不得 トイヨト イヨト

$$= \left| \sum_{x_1=0}^{N-\ell+1} e_{x_1+1}^2 \cdot e_{x_1+2}^2 \dots e_{x_1+\ell-1}^2 \right| \cdot \left| \sum_{x_2=0}^{N-\ell+1} f_{x_2+1}^2 f_{x_2+2}^2 \dots f_{x_2+\ell-1}^2 \right|$$

$$=\left|\sum_{x_1}\sum_{x_2}1\right|=(N-\ell+2)^2$$

Károly Müllner (ELTE)

CECC 2025

イロト イヨト イヨト イヨト

୬ ୯ (୦ 30 / 49

臣

What method should we use to choose coordinate points for any ℓ ? If we plot the points $\ell = 2, 3, ...$ we can notice some regularity. Consider the following coordinates:

$$(i, i+1)$$
 if $i = 0, 1, ..., \ell - 2$
 (i, i) if $i = 0, 1, ..., \ell - 1$
 $(\ell - 1, 0)$

3

イロト 不得 トイヨト イヨト

Binary Lattices

Figure: Step function shape in the coordinate system

Károly Müllner (ELTE)

CECC 2025

- 4 ⊒ ▶

Image: A math a math

æ

This generation method is viable when we want to use the lattices in applications where it is sufficient that the measures Q_1 , Q_2 , and Q_3 are small (e.g., Monte Carlo methods).

If we still need Q_4 to be small (e.g., in encryptions), we need to look for another method.

Note also that Gyarmati [1] generated a sequence of length N^2 from the lattice $\eta : I_N^2 \to \{-1, +1\}$, by writing the rows of the lattice consecutively from the bottom up to the top. She proved that if, for the lattice $\eta : I_n^2 \to \{-1, +1\}$, Q_k is small, then the resulting sequence of length N^2 has a small C_k measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

By incorporating this method into our previous construction, we can generate a lattice from two sequences E and $F \in \{-1, +1\}^N$, and then a sequence of length N^2 , by writing the rows of the lattice consecutively in sequence from the bottom up to the top.

Then, the resulting sequence of length N^2 has small pseudorandom measures W, C_2 , and C_3 if the measures $Q_2(E)$, $Q_2(F)$, $Q_3(E)$, and $Q_3(F)$ of the original sequences of length N are small. With this technique, we obtained a much longer sequence (length N^2) from two short sequences (length N), such that the low-order pseudorandomness measures W, C_2 , and C_3 are close to optimal.

Remark

We saw that Q_1, Q_2, Q_3 are small and Q_4 (and $Q_{2\ell}$) for $\ell \ge 2$ are large.

In case of $k \ge 5$ the calculation of Q_k is hopelessly slow with computer as well, but in this paper we focus on that applications in which Q_1, Q_2, Q_3 are small because this garanties the pseudorandomness of the applications. Summarize above results we have:

•
$$Q_1 = W(E) \cdot W(F)$$

•
$$Q_2 = \max\{NQ_2(E), NQ_2(F)\}$$

• $Q_3 = \max\{Q_1(E), Q_3(E)\} \cdot \max\{Q_1(F), Q_3(F)\}$

•
$$Q_4 \ge (N - \ell + 1)^2$$

イロト イヨト イヨト ・

3-dimension lattices

Let $\mathbf{x} = (x_1, x_2, x_3)$, $\mathbf{d_1} = (d_{11}, d_{12}, d_{13})$ and $\mathbf{d_2} = (d_{21}, d_{22}, d_{23})$. Let B, d_1, d_2 fixed and

$$B_N^3 = \{(x_1z_1, x_2z_2, x_3z_3) : x_1, x_2, x_3 \in \{0, 1, \cdots, N-1\}\} = I_1 \times I_2 \times I_3$$

where

$$I_1 = \{x_1z_1 : 0 \le x_1z_1 \le t_1\},$$

$$I_2 = \{x_2z_2 : 0 \le x_2z_2 \le t_2\},$$

$$I_3 = \{x_3z_3 : 0 \le x_3z_3 \le t_3\}$$

Károly Müllner (ELTE)

イロト 不得 トイヨト イヨト

э

36 / 49

3-dimension lattices – $Q_2(\eta)$

Consider the following pseudorandom measure of order 2 of η :

$$Q_{2}(\eta_{E \times F \times G}) = \max \left| \sum_{x_{1}, x_{2}, x_{3} \in I_{1} \times I_{2} \times I_{3}} \eta\left(\mathbf{x} + \mathbf{d}_{1}\right) \eta\left(\mathbf{x} + \mathbf{d}_{2}\right) \right|$$

Theorem

$$Q_2(\eta_{E\times F\times G}) = \max\{N^2 \cdot Q_2(E_N), N^2 \cdot Q_2(F_N), N^2 \cdot Q_2(G_N)\}$$

Károly Müllner (ELTE)

э

37 / 49

< 回 > < 三 > < 三 >

At first we prove that

$$Q_2(\eta_{E\times F\times G}) \leq N^2 Q_2(E_N) \cdot N^2 Q_2(F_N) \cdot N^2 \cdot Q_2(G_N)$$

Let B a box lattice and $d_1 = (d_{11}, d_{12}, d_{13})$ and $d_2 = (d_{21}, d_{22}, d_{23})$ vectors and let

$$B = \{x_1z_1, x_2z_2, x_3z_3 : 0 \le x_1z_1 \le t_1, 0 \le x_2z_2 \le t_2, 0 \le x_3z_3 \le t_3\}$$

= $l_1 \times l_2 \times l_3$

where

$$I_1 = \{x_1z_1 : 0 \le x_1z_1 \le t_1\}, \quad I_2 = \{x_2z_2 : 0 \le x_2z_2 \le t_2\}, \\ I_3 = \{x_3z_3 : 0 \le x_3z_3 \le t_3\}$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

Then

$$Q_{2}(\eta_{E \times F \times G}) = \left| \sum_{x_{1}, x_{2}, x_{3} \in I_{1} \times I_{2} \times I_{3}} \eta\left(\mathbf{x} + \mathbf{d_{1}}\right) \eta\left(\mathbf{x} + \mathbf{d_{2}}\right) \right| =$$

$$= \left| \sum_{x_1=0}^{t_1} \eta(x_1 + d_{11}) \eta(x_1 + d_{21}) \right| \cdot \left| \sum_{x_2=0}^{t_2} \eta(x_2 + d_{12}) \eta(x_2 + d_{22}) \right|$$

$$\cdot \left| \sum_{x_3=0}^{t_3} \eta(x_3 + d_{13}) \eta(x_2 + d_{23}) \right|$$

∃ 990

39 / 49

イロト イヨト イヨト イヨト

$$= \left| \sum_{x_1=0}^{t_1} e_{x_1+d_{11}} \cdot e_{x_1+d_{21}} \right| \cdot \left| \sum_{x_2=0}^{t_2} f_{x_2+d_{12}} \cdot f_{x_2+d_{22}} \right| \cdot \left| \sum_{x_3=0}^{t_3} g_{x_3+d_{13}} \cdot g_{x_3+d_{23}} \right|$$

 $\leq Q_2(E_N) \cdot Q_2(F_N) \cdot Q_2(G_N)$

Károly Müllner (ELTE)

Measures of Pseudorandomness

CECC 2025

イロト イヨト イヨト --

Ξ.

On the other hand to satisfy the $Q_2(\eta_{E \times F \times G}) = Q_2(E)Q_2(F)Q_2(G)$ let us consider that

$$I_1 = \{x_1z_1 : 0 \le x_1z_1 \le t_1\}, \quad I_2 = \{x_2z_2 : 0 \le x_2z_2 \le t_2\}, \\ I_3 = \{x_3z_3 : 0 \le x_3z_3 \le t_3\}$$

sets and $0 \le d_{11}, d_{12}, d_{13}, d_{21}, d_{23} \le N$ numbers (coordinates) for which

$$Q_2(E_N) = \sum_{0 \le x_1 z_1 \le t_1} e_{x_1 + d_{11}} e_{x_1 + d_{21}}$$

and

$$Q_2(F_N) = \sum_{0 \le x_2 z_2 \le t_2} f_{x_2 + d_{12}} f_{x_2 + d_{22}}$$

and

$$Q_2(G_N) = \sum_{0 \le x_3 z_3 \le t_3} g_{x_3 + d_{13}} f_{x_3 + d_{23}}$$

Let $d_1 = (d_{11}, d_{12}, d_{13})$ and $d_2 = (d_{21}, d_{22}, d_{23})$. Then

< 42 > < 3

æ

42 / 49

$$Q_2(\eta_{E\times F\times G}) \leq \left|\sum_{x\in B} \eta\left(\mathbf{x} + \mathbf{d_1}\right)\eta\left(\mathbf{x} + \mathbf{d_2}\right)\right| = \left|\sum_{x_1=0}^{t_1} \eta(x_1 + d_{11})\eta(x_1 + d_{21})\right|$$

$$\left| \sum_{x_2=0}^{t_2} \eta(x_2+d_{12})\eta(x_2+d_{22}) \right| \cdot \left| \sum_{x_3=0}^{t_3} \eta(x_3+d_{13})\eta(x_2+d_{23}) \right| =$$

$$= \left| \sum_{x_1=0}^{t_1} e_{x_1+d_{11}} e_{x_1+d_{21}} \right| \cdot \left| \sum_{x_2=0}^{t_2} f_{x_2+d_{12}} f_{x_2+d_{22}} \right| \cdot \left| \sum_{x_3=0}^{t_3} g_{x_3+d_{13}} g_{x_3+d_{23}} \right|$$

 $= N^2 Q_2(E_N) \cdot N^2 Q_2(F_N) \cdot N^2 Q_2(G_N)$

э

・ロト ・回ト ・ヨト ・ ヨト

3-dimension lattices – $Q_3(\eta)$

Consider the following pseudorandom measure of order 3 of η :

$$Q_{3}(\eta) = \sum_{x_{1}, x_{2}, x_{3} \in I_{1} \times I_{2} \times I_{3}} \eta \left(\mathbf{x} + \mathbf{d_{1}}\right) \eta \left(\mathbf{x} + \mathbf{d_{2}}\right) \eta \left(\mathbf{x} + \mathbf{d_{3}}\right)$$

Theorem

$$Q_3(\eta_{E \times F \times G}) =$$

 $\max\{Q_1(E), Q_3(E)\} \cdot \max\{Q_1(F), Q_3(F)\} \cdot \max\{Q_1(G), Q_3(G)\}$

3

3-dimension lattices – $Q_4(\eta)$

Let $x_1, x_2, x_3 \in I_1 \times I_2 \times I_3$ and consider the following pseudorandom measure of order 4 of η :

$$Q_{4}(\eta) = \sum_{x_{i}} \eta \left(\mathbf{x} + \mathbf{d_{1}} \right) \eta \left(\mathbf{x} + \mathbf{d_{2}} \right) \eta \left(\mathbf{x} + \mathbf{d_{3}} \right) \eta \left(\mathbf{x} + \mathbf{d_{4}} \right)$$

Theorem

$$Q_4(\eta_{E imes F imes G}) \ge (N - \ell)^3$$

Károly Müllner (ELTE)

CECC 2025

イロト 不得 トイヨト イヨト

45 / 49

- New constructions for binary lattices based on pseudorandom sequences
- Explicit bounds for Q_k measures in 2D and 3D
- Trade-off: efficient generation vs. high-order pseudorandomness
- Useful for cryptography and Monte Carlo simulations

Thank you for your attention!

3

590

イロン イ理 とくほとう ほとう

- K. Gyarmati, C. Mauduit, A. Sárközy On finite pseudorandom binary lattices
- K. Gyarmati, A. Sárközy, C.L. Stewart On Legendre symbol lattices
- P. Hubert, C. Mauduit and A. Sárközy, *On pseudorandom binary lattices*, Acta Aritmetica 125.1 (2006)
- K. Gyarmati, C. Mauduit, A. Sárközy *Pseudorandom binary sequences and lattices* Acta Arithmetica 135 (2008) 181-197.

References

K. Gyarmati, *Measures of pseudorandomness*

- L. Mérai, *A construction of pseudorandom binary sequences using rational functions*, Unif. Distrib. Theory 4 (2009), no. 1, 35-49.
- L. Mérai, *Construction of pseudorandom binary lattices using elliptic curves*, Proc. Amer. Math. Soc. 139(2) (2011), 407-420.
- L. Mérai, J. Rivat, A. Sárközy, The measures of pseudorandomness and the NIST tests, Lecture Notes in Comput. Sci., 10737, Springer, Cham, 2018, 197-216.
- A. Sárközy, *A finite pseudorandom binary sequence*, Studia Sci. Math. Hungar. 38 (2001), 377-384.

<日本

<</p>